けんちょんの競プロ精進記録

競プロの精進記録や小ネタを書いていきます

yukicoder No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)

(x - a)(x - b) ... (x - z) みたいなやつの計算

問題概要

 N 個の箱がある。箱  i には色  1, 2, \dots, A_{i} のボールが入っている。以下の  Q 個のクエリに答えよ。

  • 各クエリは  N 以下の整数  B が与えられる
  • 各箱から  1 個ずつボールを取り出す方法であって、取り出されたボールの中に色 1 のボールが  B 個であるような場合の数を、998244353 で割ったあまりを求めよ。

制約

  •  1 \le N \le 2 \times 10^{5}

考えたこと

各クエリの答えは

 f(x) = (x + A_{1} - 1)(x + A_{2} - 1) \dots (x + A_{N} - 1)

として、 x^{B} の係数に等しい。よって  f(x) の計算が素早くできればよく、これは「二分木のような計算順序」をすると  O(N (\log N)^{2}) で計算できる。

#include <bits/stdc++.h>
using namespace std;

template<int MOD> struct Fp {
    long long val;
    constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
        if (val < 0) val += MOD;
    }
    constexpr int getmod() const { return MOD; }
    constexpr Fp operator - () const noexcept {
        return val ? MOD - val : 0;
    }
    constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
    constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
    constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
    constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
    constexpr Fp& operator += (const Fp& r) noexcept {
        val += r.val;
        if (val >= MOD) val -= MOD;
        return *this;
    }
    constexpr Fp& operator -= (const Fp& r) noexcept {
        val -= r.val;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr Fp& operator *= (const Fp& r) noexcept {
        val = val * r.val % MOD;
        return *this;
    }
    constexpr Fp& operator /= (const Fp& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        val = val * u % MOD;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr bool operator == (const Fp& r) const noexcept {
        return this->val == r.val;
    }
    constexpr bool operator != (const Fp& r) const noexcept {
        return this->val != r.val;
    }
    constexpr bool operator < (const Fp& r) const noexcept {
        return this->val < r.val;
    }
    friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
        is >> x.val;
        x.val %= MOD;
        if (x.val < 0) x.val += MOD;
        return is;
    }
    friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
        return os << x.val;
    }
    friend constexpr Fp<MOD> modpow(const Fp<MOD>& r, long long n) noexcept {
        if (n == 0) return 1;
        if (n < 0) return modpow(modinv(r), -n);
        auto t = modpow(r, n / 2);
        t = t * t;
        if (n & 1) t = t * r;
        return t;
    }
    friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        return Fp<MOD>(u);
    }
};

namespace NTT {
    long long modpow(long long a, long long n, int mod) {
        long long res = 1;
        while (n > 0) {
            if (n & 1) res = res * a % mod;
            a = a * a % mod;
            n >>= 1;
        }
        return res;
    }

    long long modinv(long long a, int mod) {
        long long b = mod, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        u %= mod;
        if (u < 0) u += mod;
        return u;
    }

    int calc_primitive_root(int mod) {
        if (mod == 2) return 1;
        if (mod == 167772161) return 3;
        if (mod == 469762049) return 3;
        if (mod == 754974721) return 11;
        if (mod == 998244353) return 3;
        int divs[20] = {};
        divs[0] = 2;
        int cnt = 1;
        long long x = (mod - 1) / 2;
        while (x % 2 == 0) x /= 2;
        for (long long i = 3; i * i <= x; i += 2) {
            if (x % i == 0) {
                divs[cnt++] = i;
                while (x % i == 0) x /= i;
            }
        }
        if (x > 1) divs[cnt++] = x;
        for (int g = 2;; g++) {
            bool ok = true;
            for (int i = 0; i < cnt; i++) {
                if (modpow(g, (mod - 1) / divs[i], mod) == 1) {
                    ok = false;
                    break;
                }
            }
            if (ok) return g;
        }
    }

    int get_fft_size(int N, int M) {
        int size_a = 1, size_b = 1;
        while (size_a < N) size_a <<= 1;
        while (size_b < M) size_b <<= 1;
        return max(size_a, size_b) << 1;
    }

    // number-theoretic transform
    template<class mint> void trans(vector<mint>& v, bool inv = false) {
        if (v.empty()) return;
        int N = (int)v.size();
        int MOD = v[0].getmod();
        int PR = calc_primitive_root(MOD);
        static bool first = true;
        static vector<long long> vbw(30), vibw(30);
        if (first) {
            first = false;
            for (int k = 0; k < 30; ++k) {
                vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);
                vibw[k] = modinv(vbw[k], MOD);
            }
        }
        for (int i = 0, j = 1; j < N - 1; j++) {
            for (int k = N >> 1; k > (i ^= k); k >>= 1);
            if (i > j) swap(v[i], v[j]);
        }
        for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {
            long long bw = vbw[k];
            if (inv) bw = vibw[k];
            for (int i = 0; i < N; i += t) {
                mint w = 1;
                for (int j = 0; j < t/2; ++j) {
                    int j1 = i + j, j2 = i + j + t/2;
                    mint c1 = v[j1], c2 = v[j2] * w;
                    v[j1] = c1 + c2;
                    v[j2] = c1 - c2;
                    w *= bw;
                }
            }
        }
        if (inv) {
            long long invN = modinv(N, MOD);
            for (int i = 0; i < N; ++i) v[i] = v[i] * invN;
        }
    }

    // for garner
    static constexpr int MOD0 = 754974721;
    static constexpr int MOD1 = 167772161;
    static constexpr int MOD2 = 469762049;
    using mint0 = Fp<MOD0>;
    using mint1 = Fp<MOD1>;
    using mint2 = Fp<MOD2>;
    static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);
    static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);
    static const mint2 imod01 = 187290749; // imod1 / MOD0;

    // small case (T = mint, long long)
    template<class T> vector<T> naive_mul 
    (const vector<T>& A, const vector<T>& B) {
        if (A.empty() || B.empty()) return {};
        int N = (int)A.size(), M = (int)B.size();
        vector<T> res(N + M - 1);
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < M; ++j)
                res[i + j] += A[i] * B[j];
        return res;
    }

    // mint
    template<class mint> vector<mint> mul
    (const vector<mint>& A, const vector<mint>& B) {
        if (A.empty() || B.empty()) return {};
        int N = (int)A.size(), M = (int)B.size();
        if (min(N, M) < 30) return naive_mul(A, B);
        int MOD = A[0].getmod();
        int size_fft = get_fft_size(N, M);
        if (MOD == 998244353) {
            vector<mint> a(size_fft), b(size_fft), c(size_fft);
            for (int i = 0; i < N; ++i) a[i] = A[i];
            for (int i = 0; i < M; ++i) b[i] = B[i];
            trans(a), trans(b);
            vector<mint> res(size_fft);
            for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];
            trans(res, true);
            res.resize(N + M - 1);
            return res;
        }
        vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
        vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
        vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
        for (int i = 0; i < N; ++i)
            a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;
        for (int i = 0; i < M; ++i)
            b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;
        trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
        for (int i = 0; i < size_fft; ++i) {
            c0[i] = a0[i] * b0[i];
            c1[i] = a1[i] * b1[i];
            c2[i] = a2[i] * b2[i];
        }
        trans(c0, true), trans(c1, true), trans(c2, true);
        static const mint mod0 = MOD0, mod01 = mod0 * MOD1;
        vector<mint> res(N + M - 1);
        for (int i = 0; i < N + M - 1; ++i) {
            int y0 = c0[i].val;
            int y1 = (imod0 * (c1[i] - y0)).val;
            int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
            res[i] = mod01 * y2 + mod0 * y1 + y0;
        }
        return res;
    }

    // long long
    vector<long long> mul_ll
    (const vector<long long>& A, const vector<long long>& B) {
        if (A.empty() || B.empty()) return {};
        int N = (int)A.size(), M = (int)B.size();
        if (min(N, M) < 30) return naive_mul(A, B);
        int size_fft = get_fft_size(N, M);
        vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
        vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
        vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
        for (int i = 0; i < N; ++i)
            a0[i] = A[i], a1[i] = A[i], a2[i] = A[i];
        for (int i = 0; i < M; ++i)
            b0[i] = B[i], b1[i] = B[i], b2[i] = B[i];
        trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
        for (int i = 0; i < size_fft; ++i) {
            c0[i] = a0[i] * b0[i];
            c1[i] = a1[i] * b1[i];
            c2[i] = a2[i] * b2[i];
        }
        trans(c0, true), trans(c1, true), trans(c2, true);
        static const long long mod0 = MOD0, mod01 = mod0 * MOD1;
        vector<long long> res(N + M - 1);
        for (int i = 0; i < N + M - 1; ++i) {
            int y0 = c0[i].val;
            int y1 = (imod0 * (c1[i] - y0)).val;
            int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
            res[i] = mod01 * y2 + mod0 * y1 + y0;
        }
        return res;
    }
};

// Binomial Coefficient
template<class T> struct BiCoef {
    vector<T> fact_, inv_, finv_;
    constexpr BiCoef() {}
    constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
        init(n);
    }
    constexpr void init(int n) noexcept {
        fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
        int MOD = fact_[0].getmod();
        for(int i = 2; i < n; i++){
            fact_[i] = fact_[i-1] * i;
            inv_[i] = -inv_[MOD%i] * (MOD/i);
            finv_[i] = finv_[i-1] * inv_[i];
        }
    }
    constexpr T com(int n, int k) const noexcept {
        if (n < k || n < 0 || k < 0) return 0;
        return fact_[n] * finv_[k] * finv_[n-k];
    }
    constexpr T fact(int n) const noexcept {
        if (n < 0) return 0;
        return fact_[n];
    }
    constexpr T inv(int n) const noexcept {
        if (n < 0) return 0;
        return inv_[n];
    }
    constexpr T finv(int n) const noexcept {
        if (n < 0) return 0;
        return finv_[n];
    }
};

// Formal Power Series
template <typename mint> struct FPS : vector<mint> {
    using vector<mint>::vector;
 
    // constructor
    FPS(const vector<mint>& r) : vector<mint>(r) {}
 
    // core operator
    inline FPS pre(int siz) const {
        return FPS(begin(*this), begin(*this) + min((int)this->size(), siz));
    }
    inline FPS rev() const {
        FPS res = *this;
        reverse(begin(res), end(res));
        return res;
    }
    inline FPS& normalize() {
        while (!this->empty() && this->back() == 0) this->pop_back();
        return *this;
    }
 
    // basic operator
    inline FPS operator - () const noexcept {
        FPS res = (*this);
        for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];
        return res;
    }
    inline FPS operator + (const mint& v) const { return FPS(*this) += v; }
    inline FPS operator + (const FPS& r) const { return FPS(*this) += r; }
    inline FPS operator - (const mint& v) const { return FPS(*this) -= v; }
    inline FPS operator - (const FPS& r) const { return FPS(*this) -= r; }
    inline FPS operator * (const mint& v) const { return FPS(*this) *= v; }
    inline FPS operator * (const FPS& r) const { return FPS(*this) *= r; }
    inline FPS operator / (const mint& v) const { return FPS(*this) /= v; }
    inline FPS operator << (int x) const { return FPS(*this) <<= x; }
    inline FPS operator >> (int x) const { return FPS(*this) >>= x; }
    inline FPS& operator += (const mint& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] += v;
        return *this;
    }
    inline FPS& operator += (const FPS& r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];
        return this->normalize();
    }
    inline FPS& operator -= (const mint& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] -= v;
        return *this;
    }
    inline FPS& operator -= (const FPS& r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];
        return this->normalize();
    }
    inline FPS& operator *= (const mint& v) {
        for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;
        return *this;
    }
    inline FPS& operator *= (const FPS& r) {
        return *this = NTT::mul((*this), r);
    }
    inline FPS& operator /= (const mint& v) {
        assert(v != 0);
        mint iv = modinv(v);
        for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;
        return *this;
    }
    inline FPS& operator <<= (int x) {
        FPS res(x, 0);
        res.insert(res.end(), begin(*this), end(*this));
        return *this = res;
    }
    inline FPS& operator >>= (int x) {
        FPS res;
        res.insert(res.end(), begin(*this) + x, end(*this));
        return *this = res;
    }
    inline mint eval(const mint& v){
        mint res = 0;
        for (int i = (int)this->size()-1; i >= 0; --i) {
            res *= v;
            res += (*this)[i];
        }
        return res;
    }
    inline friend FPS gcd(const FPS& f, const FPS& g) {
        if (g.empty()) return f;
        return gcd(g, f % g);
    }

    // advanced operation
    // df/dx
    inline friend FPS diff(const FPS& f) {
        int n = (int)f.size();
        FPS res(n-1);
        for (int i = 1; i < n; ++i) res[i-1] = f[i] * i;
        return res;
    }

    // \int f dx
    inline friend FPS integral(const FPS& f) {
        int n = (int)f.size();
        FPS res(n+1, 0);
        for (int i = 0; i < n; ++i) res[i+1] = f[i] / (i+1);
        return res;
    }

    // inv(f), f[0] must not be 0
    inline friend FPS inv(const FPS& f, int deg) {
        assert(f[0] != 0);
        if (deg < 0) deg = (int)f.size();
        FPS res({mint(1) / f[0]});
        for (int i = 1; i < deg; i <<= 1) {
            res = (res + res - res * res * f.pre(i << 1)).pre(i << 1);
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS inv(const FPS& f) {
        return inv(f, f.size());
    }

    // division, r must be normalized (r.back() must not be 0)
    inline FPS& operator /= (const FPS& r) {
        assert(!r.empty());
        assert(r.back() != 0);
        this->normalize();
        if (this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int need = (int)this->size() - (int)r.size() + 1;
        *this = ((*this).rev().pre(need) * inv(r.rev(), need)).pre(need).rev();
        return *this;
    }
    inline FPS& operator %= (const FPS &r) {
        assert(!r.empty());
        assert(r.back() != 0);
        this->normalize();
        FPS q = (*this) / r;
        return *this -= q * r;
    }
    inline FPS operator / (const FPS& r) const { return FPS(*this) /= r; }
    inline FPS operator % (const FPS& r) const { return FPS(*this) %= r; }

    // log(f) = \int f'/f dx, f[0] must be 1
    inline friend FPS log(const FPS& f, int deg) {
        assert(f[0] == 1);
        FPS res = integral(diff(f) * inv(f, deg));
        res.resize(deg);
        return res;
    }
    inline friend FPS log(const FPS& f) {
        return log(f, f.size());
    }

    // exp(f), f[0] must be 0
    inline friend FPS exp(const FPS& f, int deg) {
        assert(f[0] == 0);
        FPS res(1, 1);
        for (int i = 1; i < deg; i <<= 1) {
            res = res * (f.pre(i<<1) - log(res, i<<1) + 1).pre(i<<1);
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS exp(const FPS& f) {
        return exp(f, f.size());
    }

    // pow(f) = exp(e * log f)
    inline friend FPS pow(const FPS& f, long long e, int deg) {
        long long i = 0;
        while (i < (int)f.size() && f[i] == 0) ++i;
        if (i == (int)f.size()) return FPS(deg, 0);
        if (i * e >= deg) return FPS(deg, 0);
        mint k = f[i];
        FPS res = exp(log((f >> i) / k, deg) * e, deg) * modpow(k, e) << (e * i);
        res.resize(deg);
        return res;
    }
    inline friend FPS pow(const FPS& f, long long e) {
        return pow(f, e, f.size());
    }

    // sqrt(f), f[0] must be 1
    inline friend FPS sqrt_base(const FPS& f, int deg) {
        assert(f[0] == 1);
        mint inv2 = mint(1) / 2;
        FPS res(1, 1);
        for (int i = 1; i < deg; i <<= 1) {
            res = (res + f.pre(i << 1) * inv(res, i << 1)).pre(i << 1);
            for (mint& x : res) x *= inv2;
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS sqrt_base(const FPS& f) {
        return sqrt_base(f, f.size());
    }
};

const int MOD = 998244353;
using mint = Fp<MOD>;

int main() {
    int N, Q;
    cin >> N >> Q;
    vector<mint> A(N);
    for (int i = 0; i < N; ++i) cin >> A[i];

    priority_queue<pair<size_t,FPS<mint>>,
                   vector<pair<size_t,FPS<mint>>>,
                   greater<pair<size_t,FPS<mint>>>> que;
    for (int i = 0; i < N; ++i) {
        FPS<mint> f(2, 1);
        f[0] = A[i] - 1;
        que.push({f.size(), f});
    }
    while (que.size() >= 2) {
        auto fi = que.top().second; que.pop();
        auto se = que.top().second; que.pop();
        auto fs = fi * se;
        que.push({fs.size(), fs});
    }
    auto res = que.top().second;
    for (int q = 0; q < Q; ++q) {
        int B; cin >> B;
        cout << res[B] << endl;
    }
}

yukicoder No.1145 Sums of Powers

形式的冪級数すごい

問題概要

 N 個の整数  A_{1}, \dots, A_{N} が与えられる。各  k = 1, 2, \dots, M に対して

  •  \sum_{i=1}^{N} A_{i}{}^{k}

を 998244353 で割ったあまりを求めよ。

制約

  •  1 \le N, M \le 10^{5}

考えたこと

いっそ  M 次までではなく、無限級数にしてしまう。そして

  •  f_{i}(x) = 1 + A_{i} x + A_{i}{}^{2} x^{2} + \dots

として、 \sum_{i=1}^{N} f_{i}(x) の各次数の係数を求めたい。ここで、

 f_{i}(x) = \frac{1}{1 - A_{i}x}

と計算できることに注意する。よって、

 \sum_{i=1}^{N} \frac{1}{1 - A_{i}x}

を形式的冪級数で計算できればよいことになる。愚直にやったのでは  O(NM \log M) の計算量を要して間に合わない。しかし、

 \frac{g_{1}(x)}{f_{1}(x)} + \frac{g_{2}(x)}{f_{2}(x)} = \frac{f_{1}(x)g_{2}(x) + f_{2}(x)g_{1}(x)}{f_{1}(x)f_{2}(x)}

というのを利用して、「分子」と「分母」を管理しながら計算していくことを考えてみよう。このときに、「分母の次数」が小さい順に足し合わせるようにすることで、計算量は  O(N (\log N)^{2} + M \log M) まで落とせる。

#include <bits/stdc++.h>
using namespace std;

template<int MOD> struct Fp {
    long long val;
    constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
        if (val < 0) val += MOD;
    }
    constexpr int getmod() const { return MOD; }
    constexpr Fp operator - () const noexcept {
        return val ? MOD - val : 0;
    }
    constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
    constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
    constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
    constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
    constexpr Fp& operator += (const Fp& r) noexcept {
        val += r.val;
        if (val >= MOD) val -= MOD;
        return *this;
    }
    constexpr Fp& operator -= (const Fp& r) noexcept {
        val -= r.val;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr Fp& operator *= (const Fp& r) noexcept {
        val = val * r.val % MOD;
        return *this;
    }
    constexpr Fp& operator /= (const Fp& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        val = val * u % MOD;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr bool operator == (const Fp& r) const noexcept {
        return this->val == r.val;
    }
    constexpr bool operator != (const Fp& r) const noexcept {
        return this->val != r.val;
    }
    constexpr bool operator < (const Fp& r) const noexcept {
        return this->val < r.val;
    }
    friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
        is >> x.val;
        x.val %= MOD;
        if (x.val < 0) x.val += MOD;
        return is;
    }
    friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
        return os << x.val;
    }
    friend constexpr Fp<MOD> modpow(const Fp<MOD>& r, long long n) noexcept {
        if (n == 0) return 1;
        if (n < 0) return modpow(modinv(r), -n);
        auto t = modpow(r, n / 2);
        t = t * t;
        if (n & 1) t = t * r;
        return t;
    }
    friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        return Fp<MOD>(u);
    }
};

namespace NTT {
    long long modpow(long long a, long long n, int mod) {
        long long res = 1;
        while (n > 0) {
            if (n & 1) res = res * a % mod;
            a = a * a % mod;
            n >>= 1;
        }
        return res;
    }

    long long modinv(long long a, int mod) {
        long long b = mod, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        u %= mod;
        if (u < 0) u += mod;
        return u;
    }

    int calc_primitive_root(int mod) {
        if (mod == 2) return 1;
        if (mod == 167772161) return 3;
        if (mod == 469762049) return 3;
        if (mod == 754974721) return 11;
        if (mod == 998244353) return 3;
        int divs[20] = {};
        divs[0] = 2;
        int cnt = 1;
        long long x = (mod - 1) / 2;
        while (x % 2 == 0) x /= 2;
        for (long long i = 3; i * i <= x; i += 2) {
            if (x % i == 0) {
                divs[cnt++] = i;
                while (x % i == 0) x /= i;
            }
        }
        if (x > 1) divs[cnt++] = x;
        for (int g = 2;; g++) {
            bool ok = true;
            for (int i = 0; i < cnt; i++) {
                if (modpow(g, (mod - 1) / divs[i], mod) == 1) {
                    ok = false;
                    break;
                }
            }
            if (ok) return g;
        }
    }

    int get_fft_size(int N, int M) {
        int size_a = 1, size_b = 1;
        while (size_a < N) size_a <<= 1;
        while (size_b < M) size_b <<= 1;
        return max(size_a, size_b) << 1;
    }

    // number-theoretic transform
    template<class mint> void trans(vector<mint>& v, bool inv = false) {
        if (v.empty()) return;
        int N = (int)v.size();
        int MOD = v[0].getmod();
        int PR = calc_primitive_root(MOD);
        static bool first = true;
        static vector<long long> vbw(30), vibw(30);
        if (first) {
            first = false;
            for (int k = 0; k < 30; ++k) {
                vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);
                vibw[k] = modinv(vbw[k], MOD);
            }
        }
        for (int i = 0, j = 1; j < N - 1; j++) {
            for (int k = N >> 1; k > (i ^= k); k >>= 1);
            if (i > j) swap(v[i], v[j]);
        }
        for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {
            long long bw = vbw[k];
            if (inv) bw = vibw[k];
            for (int i = 0; i < N; i += t) {
                mint w = 1;
                for (int j = 0; j < t/2; ++j) {
                    int j1 = i + j, j2 = i + j + t/2;
                    mint c1 = v[j1], c2 = v[j2] * w;
                    v[j1] = c1 + c2;
                    v[j2] = c1 - c2;
                    w *= bw;
                }
            }
        }
        if (inv) {
            long long invN = modinv(N, MOD);
            for (int i = 0; i < N; ++i) v[i] = v[i] * invN;
        }
    }

    // for garner
    static constexpr int MOD0 = 754974721;
    static constexpr int MOD1 = 167772161;
    static constexpr int MOD2 = 469762049;
    using mint0 = Fp<MOD0>;
    using mint1 = Fp<MOD1>;
    using mint2 = Fp<MOD2>;
    static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);
    static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);
    static const mint2 imod01 = 187290749; // imod1 / MOD0;

    // small case (T = mint, long long)
    template<class T> vector<T> naive_mul 
    (const vector<T>& A, const vector<T>& B) {
        if (A.empty() || B.empty()) return {};
        int N = (int)A.size(), M = (int)B.size();
        vector<T> res(N + M - 1);
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < M; ++j)
                res[i + j] += A[i] * B[j];
        return res;
    }

    // mint
    template<class mint> vector<mint> mul
    (const vector<mint>& A, const vector<mint>& B) {
        if (A.empty() || B.empty()) return {};
        int N = (int)A.size(), M = (int)B.size();
        if (min(N, M) < 30) return naive_mul(A, B);
        int MOD = A[0].getmod();
        int size_fft = get_fft_size(N, M);
        if (MOD == 998244353) {
            vector<mint> a(size_fft), b(size_fft), c(size_fft);
            for (int i = 0; i < N; ++i) a[i] = A[i];
            for (int i = 0; i < M; ++i) b[i] = B[i];
            trans(a), trans(b);
            vector<mint> res(size_fft);
            for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];
            trans(res, true);
            res.resize(N + M - 1);
            return res;
        }
        vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
        vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
        vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
        for (int i = 0; i < N; ++i)
            a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;
        for (int i = 0; i < M; ++i)
            b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;
        trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
        for (int i = 0; i < size_fft; ++i) {
            c0[i] = a0[i] * b0[i];
            c1[i] = a1[i] * b1[i];
            c2[i] = a2[i] * b2[i];
        }
        trans(c0, true), trans(c1, true), trans(c2, true);
        static const mint mod0 = MOD0, mod01 = mod0 * MOD1;
        vector<mint> res(N + M - 1);
        for (int i = 0; i < N + M - 1; ++i) {
            int y0 = c0[i].val;
            int y1 = (imod0 * (c1[i] - y0)).val;
            int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
            res[i] = mod01 * y2 + mod0 * y1 + y0;
        }
        return res;
    }

    // long long
    vector<long long> mul_ll
    (const vector<long long>& A, const vector<long long>& B) {
        if (A.empty() || B.empty()) return {};
        int N = (int)A.size(), M = (int)B.size();
        if (min(N, M) < 30) return naive_mul(A, B);
        int size_fft = get_fft_size(N, M);
        vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
        vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
        vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
        for (int i = 0; i < N; ++i)
            a0[i] = A[i], a1[i] = A[i], a2[i] = A[i];
        for (int i = 0; i < M; ++i)
            b0[i] = B[i], b1[i] = B[i], b2[i] = B[i];
        trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
        for (int i = 0; i < size_fft; ++i) {
            c0[i] = a0[i] * b0[i];
            c1[i] = a1[i] * b1[i];
            c2[i] = a2[i] * b2[i];
        }
        trans(c0, true), trans(c1, true), trans(c2, true);
        static const long long mod0 = MOD0, mod01 = mod0 * MOD1;
        vector<long long> res(N + M - 1);
        for (int i = 0; i < N + M - 1; ++i) {
            int y0 = c0[i].val;
            int y1 = (imod0 * (c1[i] - y0)).val;
            int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
            res[i] = mod01 * y2 + mod0 * y1 + y0;
        }
        return res;
    }
};

// Binomial Coefficient
template<class T> struct BiCoef {
    vector<T> fact_, inv_, finv_;
    constexpr BiCoef() {}
    constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
        init(n);
    }
    constexpr void init(int n) noexcept {
        fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
        int MOD = fact_[0].getmod();
        for(int i = 2; i < n; i++){
            fact_[i] = fact_[i-1] * i;
            inv_[i] = -inv_[MOD%i] * (MOD/i);
            finv_[i] = finv_[i-1] * inv_[i];
        }
    }
    constexpr T com(int n, int k) const noexcept {
        if (n < k || n < 0 || k < 0) return 0;
        return fact_[n] * finv_[k] * finv_[n-k];
    }
    constexpr T fact(int n) const noexcept {
        if (n < 0) return 0;
        return fact_[n];
    }
    constexpr T inv(int n) const noexcept {
        if (n < 0) return 0;
        return inv_[n];
    }
    constexpr T finv(int n) const noexcept {
        if (n < 0) return 0;
        return finv_[n];
    }
};

// Formal Power Series
template <typename mint> struct FPS : vector<mint> {
    using vector<mint>::vector;
 
    // constructor
    FPS(const vector<mint>& r) : vector<mint>(r) {}
 
    // core operator
    inline FPS pre(int siz) const {
        return FPS(begin(*this), begin(*this) + min((int)this->size(), siz));
    }
    inline FPS rev() const {
        FPS res = *this;
        reverse(begin(res), end(res));
        return res;
    }
    inline FPS& normalize() {
        while (!this->empty() && this->back() == 0) this->pop_back();
        return *this;
    }
 
    // basic operator
    inline FPS operator - () const noexcept {
        FPS res = (*this);
        for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];
        return res;
    }
    inline FPS operator + (const mint& v) const { return FPS(*this) += v; }
    inline FPS operator + (const FPS& r) const { return FPS(*this) += r; }
    inline FPS operator - (const mint& v) const { return FPS(*this) -= v; }
    inline FPS operator - (const FPS& r) const { return FPS(*this) -= r; }
    inline FPS operator * (const mint& v) const { return FPS(*this) *= v; }
    inline FPS operator * (const FPS& r) const { return FPS(*this) *= r; }
    inline FPS operator / (const mint& v) const { return FPS(*this) /= v; }
    inline FPS operator << (int x) const { return FPS(*this) <<= x; }
    inline FPS operator >> (int x) const { return FPS(*this) >>= x; }
    inline FPS& operator += (const mint& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] += v;
        return *this;
    }
    inline FPS& operator += (const FPS& r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];
        return this->normalize();
    }
    inline FPS& operator -= (const mint& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] -= v;
        return *this;
    }
    inline FPS& operator -= (const FPS& r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];
        return this->normalize();
    }
    inline FPS& operator *= (const mint& v) {
        for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;
        return *this;
    }
    inline FPS& operator *= (const FPS& r) {
        return *this = NTT::mul((*this), r);
    }
    inline FPS& operator /= (const mint& v) {
        assert(v != 0);
        mint iv = modinv(v);
        for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;
        return *this;
    }
    inline FPS& operator <<= (int x) {
        FPS res(x, 0);
        res.insert(res.end(), begin(*this), end(*this));
        return *this = res;
    }
    inline FPS& operator >>= (int x) {
        FPS res;
        res.insert(res.end(), begin(*this) + x, end(*this));
        return *this = res;
    }
    inline mint eval(const mint& v){
        mint res = 0;
        for (int i = (int)this->size()-1; i >= 0; --i) {
            res *= v;
            res += (*this)[i];
        }
        return res;
    }
    inline friend FPS gcd(const FPS& f, const FPS& g) {
        if (g.empty()) return f;
        return gcd(g, f % g);
    }

    // advanced operation
    // df/dx
    inline friend FPS diff(const FPS& f) {
        int n = (int)f.size();
        FPS res(n-1);
        for (int i = 1; i < n; ++i) res[i-1] = f[i] * i;
        return res;
    }

    // \int f dx
    inline friend FPS integral(const FPS& f) {
        int n = (int)f.size();
        FPS res(n+1, 0);
        for (int i = 0; i < n; ++i) res[i+1] = f[i] / (i+1);
        return res;
    }

    // inv(f), f[0] must not be 0
    inline friend FPS inv(const FPS& f, int deg) {
        assert(f[0] != 0);
        if (deg < 0) deg = (int)f.size();
        FPS res({mint(1) / f[0]});
        for (int i = 1; i < deg; i <<= 1) {
            res = (res + res - res * res * f.pre(i << 1)).pre(i << 1);
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS inv(const FPS& f) {
        return inv(f, f.size());
    }

    // division, r must be normalized (r.back() must not be 0)
    inline FPS& operator /= (const FPS& r) {
        assert(!r.empty());
        assert(r.back() != 0);
        this->normalize();
        if (this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int need = (int)this->size() - (int)r.size() + 1;
        *this = ((*this).rev().pre(need) * inv(r.rev(), need)).pre(need).rev();
        return *this;
    }
    inline FPS& operator %= (const FPS &r) {
        assert(!r.empty());
        assert(r.back() != 0);
        this->normalize();
        FPS q = (*this) / r;
        return *this -= q * r;
    }
    inline FPS operator / (const FPS& r) const { return FPS(*this) /= r; }
    inline FPS operator % (const FPS& r) const { return FPS(*this) %= r; }

    // log(f) = \int f'/f dx, f[0] must be 1
    inline friend FPS log(const FPS& f, int deg) {
        assert(f[0] == 1);
        FPS res = integral(diff(f) * inv(f, deg));
        res.resize(deg);
        return res;
    }
    inline friend FPS log(const FPS& f) {
        return log(f, f.size());
    }

    // exp(f), f[0] must be 0
    inline friend FPS exp(const FPS& f, int deg) {
        assert(f[0] == 0);
        FPS res(1, 1);
        for (int i = 1; i < deg; i <<= 1) {
            res = res * (f.pre(i<<1) - log(res, i<<1) + 1).pre(i<<1);
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS exp(const FPS& f) {
        return exp(f, f.size());
    }

    // pow(f) = exp(e * log f)
    inline friend FPS pow(const FPS& f, long long e, int deg) {
        long long i = 0;
        while (i < (int)f.size() && f[i] == 0) ++i;
        if (i == (int)f.size()) return FPS(deg, 0);
        if (i * e >= deg) return FPS(deg, 0);
        mint k = f[i];
        FPS res = exp(log((f >> i) / k, deg) * e, deg) * modpow(k, e) << (e * i);
        res.resize(deg);
        return res;
    }
    inline friend FPS pow(const FPS& f, long long e) {
        return pow(f, e, f.size());
    }

    // sqrt(f), f[0] must be 1
    inline friend FPS sqrt_base(const FPS& f, int deg) {
        assert(f[0] == 1);
        mint inv2 = mint(1) / 2;
        FPS res(1, 1);
        for (int i = 1; i < deg; i <<= 1) {
            res = (res + f.pre(i << 1) * inv(res, i << 1)).pre(i << 1);
            for (mint& x : res) x *= inv2;
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS sqrt_base(const FPS& f) {
        return sqrt_base(f, f.size());
    }
};

const int MOD = 998244353;
using mint = Fp<MOD>;

int main() {
    int N, M;
    cin >> N >> M;
    vector<mint> A(N);
    for (int i = 0; i < N; ++i) cin >> A[i];

    using pf = pair<FPS<mint>, FPS<mint>>;
    priority_queue<pair<size_t,pf>, vector<pair<size_t,pf>>, greater<pair<size_t,pf>>> que;
    for (int i = 0; i < N; ++i) {
        FPS<mint> f(2, 1), g(1, 1);
        f[1] = -A[i];
        que.push({2, pf(f, g)});
    }
    while (que.size() >= 2) {
        auto fi = que.top().second; que.pop();
        auto se = que.top().second; que.pop();
        auto f = fi.first * se.first;
        auto g = fi.first * se.second + fi.second * se.first;
        que.push({f.size(), pf(f, g)});
    }
    auto fg = que.top().second;
    auto res = inv(fg.first, M + 1) * fg.second;
    for (int i = 1; i <= M; ++i) {
        if (i != 1) cout << " ";
        cout << res[i];
    }
    cout << endl;
}

AtCoder ARC 106 B - Values (茶色, 400 点)

問題概要

頂点数  N、辺数  M の無向グラフが与えられる。各頂点  v には値  a_{i} が書かれている。以下の操作を好きな順序で好きな回数だけ行うことで、各頂点  v の数値が  b_{v} であるような状態にすることが可能かどうかを判定せよ。

  •  (u, v) を選んで、以下のいずれかを行う
    •  a_{u} を +1 して、 a_{v} を -1 する
    •  a_{u} を -1 して、 a_{v} を +1 する

制約

  •  N, M \le 2 \times 10^{5}

考えたこと

まず明らかに、 a の総和と  b の総和が等しくなければならない。

でも少し色々試してみると、 a の総和と  b の総和が等しくて、グラフが連結でありさえすれば、できそうだというのも見えてくる。

具体的には、グラフのうちのどこか 1 つの頂点  v について、 a_{v} =  b_{v} となるように調整することができるはずだ。そうしたら残りの頂点からまたどこか 1 つの頂点を揃えて...と繰り返していくと、最終的に全体の辻褄があって全体が揃いそう。

一応注意点として、揃える頂点として「関節点」を選んではいけない。関節点を選んでしまうと、残りの頂点がバラバラになってしまうからだ。木であれば「葉」を揃えていけば、ちょうど「葉」を切り落とすような感じで行ける。一般のグラフであっても、連結であれば全域木をとることができるので、その全域木において「葉」から順番に揃えて切り落としていくイメージで OK。

以上から、

  • 連結なグラフにおいて
  •  a の総和と  b の総和が等しい

という条件を満たせば、可能であることがわかった。連結でない一般のグラフについては、「すべての連結成分について  a の総和と  b の総和が等しい」ことが条件となる。

コード

グラフを連結成分ごとに分けるのに、Union-Find を用いた。この場合の計算量は  O(N + M\alpha(N)) となる。

#include <bits/stdc++.h>
using namespace std;

struct UnionFind {
    vector<int> par;
    
    UnionFind(int n) : par(n, -1) { }
    void init(int n) { par.assign(n, -1); }
    
    int root(int x) {
        if (par[x] < 0) return x;
        else return par[x] = root(par[x]);
    }
    
    bool issame(int x, int y) {
        return root(x) == root(y);
    }
    
    bool merge(int x, int y) {
        x = root(x); y = root(y);
        if (x == y) return false;
        if (par[x] > par[y]) swap(x, y); // merge technique
        par[x] += par[y];
        par[y] = x;
        return true;
    }
    
    int size(int x) {
        return -par[root(x)];
    }
};

int main() {
    int N, M; cin >> N >> M;
    vector<long long> a(N), b(N);
    for (int i = 0; i < N; ++i) cin >> a[i];
    for (int i = 0; i < N; ++i) cin >> b[i];

    UnionFind uf(N);
    for (int i = 0; i < M; ++i) {
        int x, y; cin >> x >> y; --x, --y;
        uf.merge(x, y);
    }

    vector<long long> sa(N, 0), sb(N, 0);
    for (int v = 0; v < N; ++v) {
        int r = uf.root(v);
        sa[r] += a[v], sb[r] += b[v];
    }
    bool res = true;
    for (int v = 0; v < N; ++v) {
        int r = uf.root(v);
        if (sa[r] != sb[r]) res = false;
    }
    if (res) cout << "Yes" << endl;
    else cout << "No" << endl;
}

AtCoder ARC 106 C - Solutions (水色, 500 点)

面白かった

問題概要

以下の条件を満たすような  N 個の区間 ( i 番目を  \lbrack L_{i}, R_{i} \rbrack とする) を構築したい。

  •  1 \le L_{i} \lt R_{i} \le 10^{9}
  •  L_{1}, \dots, L_{N}, R_{1}, \dots, R_{N} はすべて互いに相異なる整数

これらの区間の中から「どの 2 個も交差しないように最大で何個の区間を選べるか」という問題に対して、高橋君と青木君はそれぞれ次のようなアルゴリズムを考えた。

このとき、(高橋君法による個数) - (青木君法による個数) がちょうど  M となるような  N 個の区間を構築せよ。

高橋君

  •  R_{i} の値が昇順となるように, 区間を並び替える
  •  i=1,2, \dots ,N について、以下を行う。
    • これまでに選んだどの区間とも交わらないならば、それを選ぶ

青木君

  •  L_{i} の値が昇順となるように, 区間を並び替える
  •  i=1,2, \dots ,N について、以下を行う。
    • これまでに選んだどの区間とも交わらないならば、それを選ぶ

制約

  •  1 \le N \le 2 \times 10^{5}
  •  -N \le M \le N

考えたこと

まず、高橋君の方法は最適解を導く。よって、 M \lt 0 となることはありえない。さらに、

  •  M = N は、高橋君 = N、青木君 = 0 となるしかないが、青木君は最低でも 1 以上にはなるのでありえない
  •  M = N-1 は、高橋君 = N、青木君 = 1 となるしかない (青木君 = 0 はない) が、高橋君 = N であることは「区間がすべて互いに交わらない」ことを意味していて、そのとき青木君も N になるのでダメ

ということがわかる。残りは  M = 0, 1, 2, \dots, N - 2 の場合を考えていこう。

M = 0

M = 0 のときは比較的わかりやすい。下図みたいにしておけば、

  • 高橋君 = N
  • 青木君 = N

となるので OK。

それ以外

それ以外のときも、下図みたいにしておけば、

  • 高橋君 = N - 1 (最初の長いやつだけダメ)
  • 青木君 = N - M - 1

となるので OK。

コード

 N = 1, M = 0 の場合に注意。この場合は  M = N - 1 であるが、Yes となる。

#include <bits/stdc++.h>
using namespace std;

void solve(long long N, long long M) {
    if (M == 0) {
        long long cur = 1;
        for (int i = 0; i < N; ++i) cout << cur++ << " " << cur++ << endl;
        return;
    }
    if (M < 0 || M >= N - 1) {
        cout << -1 << endl;
        return;
    }
    const long long GETA = 500000000;
    cout << 1 << " " << GETA << endl;
    long long cur = 2;
    for (int i = 0; i < M+1; ++i) cout << cur++ << " " << cur++ << endl;
    cur = GETA + 1;
    for (int i = 0; i < N-M-2; ++i) cout << cur++ << " " << cur++ << endl;
}

int main() {
    long long N, M;
    cin >> N >> M;
    solve(N, M);
}

AtCoder ARC 106 D - Powers (青色, 600 点)

「要素を 1 個ずつ追加していくときに値がどう変化していくか」を観察する方向でずっと考えていて迷走してしまった...

問題概要

正の整数  K と、 N 個の整数  A_{1}, \dots, A_{N} が与えられる。 X = 1, 2, \dots, K に対して、

 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N-1} (A_{i} + A_{j})^{X}

の値を 998244353 で割ったあまりを求めよ。

制約

  •  2 \le N \le 2 \times 10^{5}
  •  1 \le K \le 300

解法

 N 個のうち  2 個を選ぶ  {}_{N}{\rm C}_{2} 通りのペアについての総和を求める問題となっている。こういうのは確かに

  •  N 個のうちから重複も許して  2 個選んだ場合を求めて
  •  N 個のうちから重複して  2 個選ぶ場合を引いて
  • 最後に 2 で割る

という考え方が定石なのかもしれない。そっちの方向に行けなかった...。試しに  N = 3 x = 4 としてみる。このとき  3 \times 3 = 9 個の和になるが、そのうちの  (a + ?)^{x} の部分だけを抽出してみる。そうすると、

  •  (a+a)^{4} = {}_{4}{\rm C}_{0}a^{4}a^{0} + {}_{4}{\rm C}_{1}a^{3}a^{1} + {}_{4}{\rm C}_{2}a^{2}a^{2} + {}_{4}{\rm C}_{3}a^{1}a^{3} + {}_{4}{\rm C}_{4}a^{0}a^{4}
  •  (a+b)^{4} = {}_{4}{\rm C}_{0}a^{4}b^{0} + {}_{4}{\rm C}_{1}a^{3}b^{1} + {}_{4}{\rm C}_{2}a^{2}b^{2} + {}_{4}{\rm C}_{3}a^{1}b^{3} + {}_{4}{\rm C}_{4}a^{0}b^{4}
  •  (a+c)^{4} = {}_{4}{\rm C}_{0}a^{4}c^{0} + {}_{4}{\rm C}_{1}a^{3}c^{1} + {}_{4}{\rm C}_{2}a^{2}c^{2} + {}_{4}{\rm C}_{3}a^{1}c^{3} + {}_{4}{\rm C}_{4}a^{0}c^{4}

となっている。コンビネーションのところは  {}_{n}{\rm C}_{r} = \frac{n!}{r!(n-r)!} を使うと、かなり綺麗になる。

  •  \frac{(a+a)^{4}}{4!} = \frac{a^{4}}{4!} \frac{a^{0}}{0!} + \frac{a^{3}}{3!} \frac{a^{1}}{1!} + \frac{a^{2}}{2!} \frac{a^{2}}{2!} + \frac{a^{1}}{1!} \frac{a^{3}}{3!} + \frac{a^{0}}{0!} \frac{a^{4}}{4!}
  •  \frac{(a+b)^{4}}{4!} = \frac{a^{4}}{4!} \frac{b^{0}}{0!} + \frac{a^{3}}{3!} \frac{b^{1}}{1!} + \frac{a^{2}}{2!} \frac{b^{2}}{2!} + \frac{a^{1}}{1!} \frac{b^{3}}{3!} + \frac{a^{0}}{0!} \frac{b^{4}}{4!}
  •  \frac{(a+c)^{4}}{4!} = \frac{a^{4}}{4!} \frac{c^{0}}{0!} + \frac{a^{3}}{3!} \frac{c^{1}}{1!} + \frac{a^{2}}{2!} \frac{c^{2}}{2!} + \frac{a^{1}}{1!} \frac{c^{3}}{3!} + \frac{a^{0}}{0!} \frac{c^{4}}{4!}


さて、 a'_{i} = \frac{a^{i}}{i!} と表記することにすると、次のようにまとめられることがわかる。


 \frac{(a+a)^{4}}{4!} + \frac{(a+b)^{4}}{4!} + \frac{(a+c)^{4}}{4!}
 = a'_{4}(a'_{0} + b'_{0} + c'_{0})
 + a'_{3}(a'_{1} + b'_{1} + c'_{1})
 + a'_{2}(a'_{2} + b'_{2} + c'_{2})
 + a'_{1}(a'_{3} + b'_{3} + c'_{3})
 + a'_{0}(a'_{4} + b'_{4} + c'_{4})

さらに、 (b + ?)^{4} (c + ?)^{4} についても考えると、対称性から


 \frac{(a+a)^{4}}{4!} + \frac{(a+b)^{4}}{4!} + \frac{(a+c)^{4}}{4!} + \frac{(b+a)^{4}}{4!} + \frac{(b+b)^{4}}{4!} + \frac{(b+c)^{4}}{4!} + \frac{(c+a)^{4}}{4!} + \frac{(c+b)^{4}}{4!} + \frac{(c+c)^{4}}{4!}
 = (a'_{4} + b'_{4} + c'_{4})(a'_{0} + b'_{0} + c'_{0})
 + (a'_{3} + b'_{3} + c'_{3})(a'_{1} + b'_{1} + c'_{1})
 + (a'_{2} + b'_{2} + c'_{2})(a'_{2} + b'_{2} + c'_{2})
 + (a'_{1} + b'_{1} + c'_{1})(a'_{3} + b'_{3} + c'_{3})
 + (a'_{0} + b'_{0} + c'_{0})(a'_{4} + b'_{4} + c'_{4})

となる。よって、

  •  a'_{k} + b'_{k} + c'_{k}

をそれぞれ前処理で求めておけば、 x = 1, 2, \dots, K の場合をすべて求める作業を  O(K^{2}) でできることになる。

以上のことは一般の場合にも拡張できて、全体の計算量は  O(NK + K^{2}) となる。

#include <bits/stdc++.h>
using namespace std;

// modint
template<int MOD> struct Fp {
    long long val;
    constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
        if (val < 0) val += MOD;
    }
    constexpr int getmod() const { return MOD; }
    constexpr Fp operator - () const noexcept {
        return val ? MOD - val : 0;
    }
    constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
    constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
    constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
    constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
    constexpr Fp& operator += (const Fp& r) noexcept {
        val += r.val;
        if (val >= MOD) val -= MOD;
        return *this;
    }
    constexpr Fp& operator -= (const Fp& r) noexcept {
        val -= r.val;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr Fp& operator *= (const Fp& r) noexcept {
        val = val * r.val % MOD;
        return *this;
    }
    constexpr Fp& operator /= (const Fp& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        val = val * u % MOD;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr bool operator == (const Fp& r) const noexcept {
        return this->val == r.val;
    }
    constexpr bool operator != (const Fp& r) const noexcept {
        return this->val != r.val;
    }
    friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
        is >> x.val;
        x.val %= MOD;
        if (x.val < 0) x.val += MOD;
        return is;
    }
    friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
        return os << x.val;
    }
    friend constexpr Fp<MOD> modpow(const Fp<MOD>& r, long long n) noexcept {
        if (n == 0) return 1;
        if (n < 0) return modpow(modinv(r), -n);
        auto t = modpow(r, n / 2);
        t = t * t;
        if (n & 1) t = t * r;
        return t;
    }
    friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        return Fp<MOD>(u);
    }
};

// Binomial Coefficient
template<class T> struct BiCoef {
    vector<T> fact_, inv_, finv_;
    constexpr BiCoef() {}
    constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
        init(n);
    }
    constexpr void init(int n) noexcept {
        fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
        int MOD = fact_[0].getmod();
        for(int i = 2; i < n; i++){
            fact_[i] = fact_[i-1] * i;
            inv_[i] = -inv_[MOD%i] * (MOD/i);
            finv_[i] = finv_[i-1] * inv_[i];
        }
    }
    constexpr T com(int n, int k) const noexcept {
        if (n < k || n < 0 || k < 0) return 0;
        return fact_[n] * finv_[k] * finv_[n-k];
    }
    constexpr T fact(int n) const noexcept {
        if (n < 0) return 0;
        return fact_[n];
    }
    constexpr T inv(int n) const noexcept {
        if (n < 0) return 0;
        return inv_[n];
    }
    constexpr T finv(int n) const noexcept {
        if (n < 0) return 0;
        return finv_[n];
    }
};

const int MOD = 998244353;
using mint = Fp<MOD>;

int main() {
    int N, K;
    cin >> N >> K;
    BiCoef<mint> bc(K+1);
    vector<mint> A(N);
    for (int i = 0; i < N; ++i) cin >> A[i];

    vector<mint> S(K+1, 0), powA(N, 1);
    for (int k = 0; k <= K; ++k) {
        for (int i = 0; i < N; ++i) {
            S[k] += powA[i];
            powA[i] *= A[i];
        }
        S[k] *= bc.finv(k);
    }
    for (int k = 1; k <= K; ++k) {
        mint res = 0;
        for (int i = 0; i <= k; ++i) res += S[i] * S[k-i];
        res = (res - S[k] * modpow(mint(2), k)) * bc.fact(k) / 2;
        cout << res << endl;
    }
}

 

解法 (2):NTT で高速化

上のコードで、

for (int k = 1; k <= K; ++k) {
    mint res = 0;
    for (int i = 0; i <= k; ++i) res += S[i] * S[k-i];
}

という処理をしている。ここは NTT を用いて高速化できる!それをすることで  O(NK + K \log K) の計算量となる。

 

N, K ともに巨大でも

 N, K \le 10^{5} であっても、次の yukicoder の問題の知見を活用することで解ける模様。

drken1215.hatenablog.com

 

コンテスト中に考えていたこと

 N 個の値を対等に扱う思考に入れずに、ひたすら「1 個追加するとどうなるか」を考える方向に走ってしまった。

畳み込み計算も駆使して、 O(NK \log K) までにはなったのだけど、間に合わなかった。