ボロノイ図
問題概要
頂点の凸多角形と、その内部に 個の点が与えられる。それらの各 個の点に対して、以下の問に答えよ。
- 凸多角形のうち、その点に最も近い領域の面積を求めよ
制約
考えたこと
まさにボロノイ図を求めよ、という問題。
#include <iostream> #include <vector> #include <cmath> #include <iomanip> #include <algorithm> using namespace std; using DD = double; const DD INF = 1LL<<60; // to be set appropriately const DD EPS = 1e-10; // to be set appropriately const DD PI = acosl(-1.0); DD torad(int deg) {return (DD)(deg) * PI / 180;} DD todeg(DD ang) {return ang * 180 / PI;} /* Point */ struct Point { DD x, y; Point(DD x = 0.0, DD y = 0.0) : x(x), y(y) {} friend ostream& operator << (ostream &s, const Point &p) {return s << '(' << p.x << ", " << p.y << ')';} }; inline Point operator + (const Point &p, const Point &q) {return Point(p.x + q.x, p.y + q.y);} inline Point operator - (const Point &p, const Point &q) {return Point(p.x - q.x, p.y - q.y);} inline Point operator * (const Point &p, DD a) {return Point(p.x * a, p.y * a);} inline Point operator * (DD a, const Point &p) {return Point(a * p.x, a * p.y);} inline Point operator * (const Point &p, const Point &q) {return Point(p.x * q.x - p.y * q.y, p.x * q.y + p.y * q.x);} inline Point operator / (const Point &p, DD a) {return Point(p.x / a, p.y / a);} inline Point conj(const Point &p) {return Point(p.x, -p.y);} inline Point rot(const Point &p, DD ang) {return Point(cos(ang) * p.x - sin(ang) * p.y, sin(ang) * p.x + cos(ang) * p.y);} inline Point rot90(const Point &p) {return Point(-p.y, p.x);} inline DD cross(const Point &p, const Point &q) {return p.x * q.y - p.y * q.x;} inline DD dot(const Point &p, const Point &q) {return p.x * q.x + p.y * q.y;} inline DD norm(const Point &p) {return dot(p, p);} inline DD abs(const Point &p) {return sqrt(dot(p, p));} inline DD amp(const Point &p) {DD res = atan2(p.y, p.x); if (res < 0) res += PI*2; return res;} inline bool eq(const Point &p, const Point &q) {return abs(p - q) < EPS;} inline bool operator < (const Point &p, const Point &q) {return (abs(p.x - q.x) > EPS ? p.x < q.x : p.y < q.y);} inline bool operator > (const Point &p, const Point &q) {return (abs(p.x - q.x) > EPS ? p.x > q.x : p.y > q.y);} inline Point operator / (const Point &p, const Point &q) {return p * conj(q) / norm(q);} /* Line */ struct Line : vector<Point> { Line(Point a = Point(0.0, 0.0), Point b = Point(0.0, 0.0)) { this->push_back(a); this->push_back(b); } friend ostream& operator << (ostream &s, const Line &l) {return s << '{' << l[0] << ", " << l[1] << '}';} }; /* Circle */ struct Circle : Point { DD r; Circle(Point p = Point(0.0, 0.0), DD r = 0.0) : Point(p), r(r) {} friend ostream& operator << (ostream &s, const Circle &c) {return s << '(' << c.x << ", " << c.y << ", " << c.r << ')';} }; /////////////////////// // 多角形 /////////////////////// // 多角形の面積 DD calc_area(const vector<Point> &pol) { DD res = 0.0; for (int i = 0; i < pol.size(); ++i) { res += cross(pol[i], pol[(i+1)%pol.size()]); } return res/2.0L; } // convex cut int ccw_for_convexcut(const Point &a, const Point &b, const Point &c) { if (cross(b-a, c-a) > EPS) return 1; if (cross(b-a, c-a) < -EPS) return -1; if (dot(b-a, c-a) < -EPS) return 2; if (norm(b-a) < norm(c-a) - EPS) return -2; return 0; } vector<Point> crosspoint_for_convexcut(const Line &l, const Line &m) { vector<Point> res; DD d = cross(m[1] - m[0], l[1] - l[0]); if (abs(d) < EPS) return vector<Point>(); res.push_back(l[0] + (l[1] - l[0]) * cross(m[1] - m[0], m[1] - l[0]) / d); return res; } vector<Point> convex_cut(const vector<Point> &pol, const Line &l) { vector<Point> res; for (int i = 0; i < pol.size(); ++i) { Point p = pol[i], q = pol[(i+1)%pol.size()]; if (ccw_for_convexcut(l[0], l[1], p) != -1) { if (res.size() == 0) res.push_back(p); else if (!eq(p, res[res.size()-1])) res.push_back(p); } if (ccw_for_convexcut(l[0], l[1], p) * ccw_for_convexcut(l[0], l[1], q) < 0) { vector<Point> temp = crosspoint_for_convexcut(Line(p, q), l); if (temp.size() == 0) continue; else if (res.size() == 0) res.push_back(temp[0]); else if (!eq(temp[0], res[res.size()-1])) res.push_back(temp[0]); } } return res; } // Voronoi-diagram // pol: outer polygon, ps: points // find the polygon nearest to ps[ind] Line bisector(const Point &p, const Point &q) { Point c = (p + q) / 2.0L; Point v = (q - p) * Point(0.0L, 1.0L); v = v / abs(v); return Line(c - v, c + v); } vector<Point> voronoi(const vector<Point> &pol, const vector<Point> &ps, int ind) { vector<Point> res = pol; for (int i = 0; i < ps.size(); ++i) { if (i == ind) continue; Line l = bisector(ps[ind], ps[i]); res = convex_cut(res, l); } return res; } int main() { int N, M; while (cin >> N >> M, N) { vector<Point> pol(N), ps(M); for (int i = 0; i < N; ++i) cin >> pol[i].x >> pol[i].y; for (int i = 0; i < M; ++i) cin >> ps[i].x >> ps[i].y; for (int i = 0; i < M; ++i) { DD res = calc_area(voronoi(pol, ps, i)); cout << fixed << setprecision(12) << res << endl; } } }