この問題は、人生で最初に挑む遅延セグ木の問題としてオススメ!Starry Sky Tree と呼ばれるものでもある。
問題概要
数列 に対して、次の 2 種類のクエリを 個処理せよ。なお、数列は最初は 0 に初期化されているとする。
- クエリタイプ (
0 s t x
): に を加算する - クエリタイプ (
1 s t
): の最小値を答える
制約
考えたこと
遅延セグメント木は、下図のように「区間全体の値を更新する」ことを要求されるときに効果を発揮する。
遅延セグメント木の解説は、アルメリアさんの記事がわかりやすい。
今回のように「区間加算」「区間最小値取得」においては、
- セグ木のノードの値:
long long
型 (単位元は ) - セグ木の遅延評価パラメータの値:
long long
型 (単位元は 0)
として、
- セグ木のノード間の二項演算を表す関数:
op(x, y) = min(x, y)
- セグ木のノード値
v
に遅延評価パラメータf
を適用する関数:mapping(f, v) = v + f
- セグ木の遅延評価パラメータ
f
に続けてパラメータg
を合成する関数:composition(g, f) = g + f
とすればよい。
コード
#include <bits/stdc++.h> using namespace std; // Lazy Segment Tree template<class Monoid, class Action> struct LazySegmentTree { // various function types using FuncOperator = function<Monoid(Monoid, Monoid)>; using FuncMapping = function<Monoid(Action, Monoid)>; using FuncComposition = function<Action(Action, Action)>; // core member int N; FuncOperator OP; FuncMapping MAPPING; FuncComposition COMPOSITION; Monoid IDENTITY_MONOID; Action IDENTITY_ACTION; // inner data int log, offset; vector<Monoid> dat; vector<Action> lazy; // constructor LazySegmentTree() {} LazySegmentTree(int n, const FuncOperator op, const FuncMapping mapping, const FuncComposition composition, const Monoid &identity_monoid, const Action &identity_action) { init(n, op, mapping, composition, identity_monoid, identity_action); } LazySegmentTree(const vector<Monoid> &v, const FuncOperator op, const FuncMapping mapping, const FuncComposition composition, const Monoid &identity_monoid, const Action &identity_action) { init(v, op, mapping, composition, identity_monoid, identity_action); } void init(int n, const FuncOperator op, const FuncMapping mapping, const FuncComposition composition, const Monoid &identity_monoid, const Action &identity_action) { N = n, OP = op, MAPPING = mapping, COMPOSITION = composition; IDENTITY_MONOID = identity_monoid, IDENTITY_ACTION = identity_action; log = 0, offset = 1; while (offset < N) ++log, offset <<= 1; dat.assign(offset * 2, IDENTITY_MONOID); lazy.assign(offset * 2, IDENTITY_ACTION); } void init(const vector<Monoid> &v, const FuncOperator op, const FuncMapping mapping, const FuncComposition composition, const Monoid &identity_monoid, const Action &identity_action) { init((int)v.size(), op, mapping, composition, identity_monoid, identity_action); build(v); } void build(const vector<Monoid> &v) { assert(N == (int)v.size()); for (int i = 0; i < N; ++i) dat[i + offset] = v[i]; for (int k = offset - 1; k > 0; --k) pull_dat(k); } int size() const { return N; } // basic functions for lazy segment tree void pull_dat(int k) { dat[k] = OP(dat[k * 2], dat[k * 2 + 1]); } void apply_lazy(int k, const Action &f) { dat[k] = MAPPING(f, dat[k]); if (k < offset) lazy[k] = COMPOSITION(f, lazy[k]); } void push_lazy(int k) { if (lazy[k] == IDENTITY_ACTION) return; apply_lazy(k * 2, lazy[k]); apply_lazy(k * 2 + 1, lazy[k]); lazy[k] = IDENTITY_ACTION; } void pull_dat_deep(int k) { for (int h = 1; h <= log; ++h) pull_dat(k >> h); } void push_lazy_deep(int k) { for (int h = log; h >= 1; --h) push_lazy(k >> h); } // setter and getter, update A[i], i is 0-indexed, O(log N) void set(int i, const Monoid &v) { assert(0 <= i && i < N); int k = i + offset; push_lazy_deep(k); dat[k] = v; pull_dat_deep(k); } Monoid get(int i) { assert(0 <= i && i < N); int k = i + offset; push_lazy_deep(k); return dat[k]; } Monoid operator [] (int i) { return get(i); } // apply f for index i void apply(int i, const Action &f) { assert(0 <= i && i < N); int k = i + offset; push_lazy_deep(k); dat[k] = MAPPING(f, dat[k]); pull_dat_deep(k); } // apply f for interval [l, r) void apply(int l, int r, const Action &f) { assert(0 <= l && l <= r && r <= N); if (l == r) return; l += offset, r += offset; for (int h = log; h >= 1; --h) { if (((l >> h) << h) != l) push_lazy(l >> h); if (((r >> h) << h) != r) push_lazy((r - 1) >> h); } int original_l = l, original_r = r; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) apply_lazy(l++, f); if (r & 1) apply_lazy(--r, f); } l = original_l, r = original_r; for (int h = 1; h <= log; ++h) { if (((l >> h) << h) != l) pull_dat(l >> h); if (((r >> h) << h) != r) pull_dat((r - 1) >> h); } } // get prod of interval [l, r) Monoid prod(int l, int r) { assert(0 <= l && l <= r && r <= N); if (l == r) return IDENTITY_MONOID; l += offset, r += offset; for (int h = log; h >= 1; --h) { if (((l >> h) << h) != l) push_lazy(l >> h); if (((r >> h) << h) != r) push_lazy(r >> h); } Monoid val_left = IDENTITY_MONOID, val_right = IDENTITY_MONOID; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) val_left = OP(val_left, dat[l++]); if (r & 1) val_right = OP(dat[--r], val_right); } return OP(val_left, val_right); } Monoid all_prod() { return dat[1]; } // get max r that f(get(l, r)) = True (0-indexed), O(log N) // f(IDENTITY) need to be True int max_right(const function<bool(Monoid)> f, int l = 0) { if (l == N) return N; l += offset; push_lazy_deep(l); Monoid sum = IDENTITY_MONOID; do { while (l % 2 == 0) l >>= 1; if (!f(OP(sum, dat[l]))) { while (l < offset) { push_lazy(l); l = l * 2; if (f(OP(sum, dat[l]))) { sum = OP(sum, dat[l]); ++l; } } return l - offset; } sum = OP(sum, dat[l]); ++l; } while ((l & -l) != l); // stop if l = 2^e return N; } // get min l that f(get(l, r)) = True (0-indexed), O(log N) // f(IDENTITY) need to be True int min_left(const function<bool(Monoid)> f, int r = -1) { if (r == 0) return 0; if (r == -1) r = N; r += offset; push_lazy_deep(r - 1); Monoid sum = IDENTITY_MONOID; do { --r; while (r > 1 && (r % 2)) r >>= 1; if (!f(OP(dat[r], sum))) { while (r < offset) { push_lazy(r); r = r * 2 + 1; if (f(OP(dat[r], sum))) { sum = OP(dat[r], sum); --r; } } return r + 1 - offset; } sum = OP(dat[r], sum); } while ((r & -r) != r); return 0; } // debug stream friend ostream& operator << (ostream &s, LazySegmentTree seg) { for (int i = 0; i < (int)seg.size(); ++i) { s << seg[i]; if (i != (int)seg.size() - 1) s << " "; } return s; } // dump void dump() { for (int i = 0; i <= log; ++i) { for (int j = (1 << i); j < (1 << (i + 1)); ++j) { cout << "{" << dat[j] << "," << lazy[j] << "} "; } cout << endl; } } }; int main() { int N, Q; cin >> N >> Q; vector<long long> v(N, 0); const long long identity_monoid = (1LL << 31) - 1; const long long identity_action = 0; auto op = [&](long long x, long long y) { return min(x, y); }; auto mapping = [&](long long f, long long x) { return f + x; }; auto composition = [&](long long g, long long f) { return g + f; }; LazySegmentTree<long long, long long> seg(v, op, mapping, composition, identity_monoid, identity_action); while (Q--) { int type, s, t; cin >> type >> s >> t; ++t; if (type == 0) { long long x; cin >> x; seg.apply(s, t, x); } else { cout << seg.prod(s, t) << endl; } } }