すごく教育的問題!
問題概要
非負整数 が与えられるので、次の値を 998244353 で割った余りを求めよ。
&
制約
考えたこと
この手の問題は「主客転倒」して、上記の総和を各桁ごとに考えればよいと相場が決まっている!!! 具体的には、次のように考える。
すべてを二進法で考える。右から 桁目について
「 &
の右から
桁目が 1 であるような
(
) の個数」
を求めればよい。
この値を ごとに求めて、
をかけて足せばよい。
各桁ごとの値
上記の値は、さらに の
桁目が 1 であるもののみを考えればよく、そのような
に対して、
「 のうち、右から
桁目が 1 であるものの個数」
を求める問題に他ならない。これは頑張れば求められる (公式解説参照)。
計算量は などになる。
コード
#include <bits/stdc++.h> using namespace std; // modint template<int MOD> struct Fp { // inner value long long val; // constructor constexpr Fp() : val(0) { } constexpr Fp(long long v) : val(v % MOD) { if (val < 0) val += MOD; } constexpr long long get() const { return val; } constexpr int get_mod() const { return MOD; } // arithmetic operators constexpr Fp operator + () const { return Fp(*this); } constexpr Fp operator - () const { return Fp(0) - Fp(*this); } constexpr Fp operator + (const Fp &r) const { return Fp(*this) += r; } constexpr Fp operator - (const Fp &r) const { return Fp(*this) -= r; } constexpr Fp operator * (const Fp &r) const { return Fp(*this) *= r; } constexpr Fp operator / (const Fp &r) const { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp &r) { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -= (const Fp &r) { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator *= (const Fp &r) { val = val * r.val % MOD; return *this; } constexpr Fp& operator /= (const Fp &r) { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr Fp pow(long long n) const { Fp res(1), mul(*this); while (n > 0) { if (n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } constexpr Fp inv() const { Fp res(1), div(*this); return res / div; } // other operators constexpr bool operator == (const Fp &r) const { return this->val == r.val; } constexpr bool operator != (const Fp &r) const { return this->val != r.val; } constexpr Fp& operator ++ () { ++val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -- () { if (val == 0) val += MOD; --val; return *this; } constexpr Fp operator ++ (int) const { Fp res = *this; ++*this; return res; } constexpr Fp operator -- (int) const { Fp res = *this; --*this; return res; } friend constexpr istream& operator >> (istream &is, Fp<MOD> &x) { is >> x.val; x.val %= MOD; if (x.val < 0) x.val += MOD; return is; } friend constexpr ostream& operator << (ostream &os, const Fp<MOD> &x) { return os << x.val; } friend constexpr Fp<MOD> pow(const Fp<MOD> &r, long long n) { return r.pow(n); } friend constexpr Fp<MOD> inv(const Fp<MOD> &r) { return r.inv(); } }; // Binomial coefficient template<class mint> struct BiCoef { vector<mint> fact_, inv_, finv_; constexpr BiCoef() {} constexpr BiCoef(int n) : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); } constexpr void init(int n) { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); int MOD = fact_[0].get_mod(); for(int i = 2; i < n; i++){ fact_[i] = fact_[i-1] * i; inv_[i] = -inv_[MOD%i] * (MOD/i); finv_[i] = finv_[i-1] * inv_[i]; } } constexpr mint com(int n, int k) const { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n-k]; } constexpr mint fact(int n) const { if (n < 0) return 0; return fact_[n]; } constexpr mint inv(int n) const { if (n < 0) return 0; return inv_[n]; } constexpr mint finv(int n) const { if (n < 0) return 0; return finv_[n]; } }; const int MOD = 998244353; using mint = Fp<MOD>; int main() { long long N, M; cin >> N >> M; mint res = 0; for (int d = 0; d <= 60; ++d) { if (!(M & (1LL<<d))) continue; // 1 以上 N 以下の整数のうち、d 桁目が 1 であるものの個数 long long upper = N >> (d + 1); long long lower = 1LL << d; mint tmp = mint(upper) * lower; if (N & (1LL << d)) { long long val = 0; for (int i = 0; i < d; ++i) { if (N & (1LL << i)) val |= (1LL << i); } tmp += val + 1; } res += tmp; } cout << res << endl; }